
IMSYS Version 6.2 (98-11-08)

This is a ”small” image handling system called IMSYS written in C.

IMSYS is a collection of more than 44 small programs centred on a common image interface.
An image consists of a text header file located in the header directory (HDRPATH) and a
binary data file located in the image directory (IMGPATH). The data file is addressed indirectly
through the header file. The header file contains FITS-like keywords. The image name is the
header file-name without the ”.HDR” extension.

A new feature makes it possible to select arguments from the command line of a previous
invocation of the same program. It is implemented by reading the old arguments from an
argument file (one for each program) located in the argument directory (ARGS). If ’:’ appears
as an argument it is replaced by the corresponding argument of the previous invocation of the
program (if possible). If ’ !’ is given as an argument it signifies that the remaining arguments
should be taken from the saved command line starting at the corresponding position.

A short description of how to call a program can be obtained by typing the program name
with no parameters. Note, that image names may not contain any punctuation characters.
The following is a list of existing programs with a short description (parameters in [] are
optional, several possible options are separated by |). Parameters following a single letter with
a ’–’ prefix (Unix style) are also optional (e.g. –x param or –xparam).

1. list -l -s -d levdist [image1] [image2] [image3]...
List directory information on images. –l produces a long listing.
–s produces a short listing.
–d levdist selects the images according to how equal they are to the given name image1
by using the ”Levenstein distance” between two strings. All images with a distance closer
than or equal to levdist are included. You may also use wild card *(s) in image1, but not
when using the the –d option, and remember to put ” around any parameters containing
(s): list ”ngc”.
Note, this is not necessary under MS-DOS (PC).

2. addpsf -t -s image Xc Yc A1 A2 R1 R2
Adds a PSF of the following form to an existing image:

PSF (x, y) =
A1

R2
1

e−π((x−Xc)2+(y−Yc)2)/R2
1 +

A2

R2
2

e−π((x−Xc)2+(y−Yc)2)/R2
2

–t indicates that the Optical Transfer Function (the Fourier transform of the PSF) should
be added instead:

OTF (x, y) =
A1

N2
e−π((x−Xc)2+(y−Yc)2)R2

1 +
A2

N2
e−π((x−Xc)2+(y−Yc)2)R2

2

where we have assumed that the image has dimension N × N.
–s indicates that the PSF should be subtracted instead of being added.

3. addstar -g pow image top Xc Yc fwhm
Adds a Pseudo-Gaussian star with hight top and full width at half maximum fwhm at

1

location (Xc, Yc). Random noise is added.
–g pow indicates that the radial exponent pow should be different from 2. Default is a
Gaussian (pow = 2).

4. adgalaxy image Xc Yc Ie Re [PA] [eps]
Adds a de Vaucouleurs galaxy at the location (Xc, Yc). The surface brightness is Ie at
the effective radius Re. PA is the position angle (in deg) of the major axis, and eps is
the ellipticity. Random noise is added.

5. aphot -n -e epdn image Xc Yc RadMax SkyMin SkyMax [RadMin]
Makes aperture photometry of an object centred on (Xc, Yc). All pixels with RadMin
≤ radius ≤ RadMax are sky subtracted and summed. The mean sky value is derived
from pixels within the annulus SkyMin ≤ radius ≤ SkyMax. –n indicates that no sky
subtraction should be done. –e epdn is used to assign the number of electrons per Digital
Number. The default is epdn = 2.6. If RadMin is not given RadMin = 0 is assumed.

6. badcol image Xc dX1 dX2 dX3 [Ymin] [Ymax]
Removes a bad column between rows Ymin:Ymax by linear interpolation of pixel values
in the interval [Xc–dX1, Xc+dX1]. The endpoints of this interpolation are derived
by taking the mean values for the two intervals [Xc–dX3, Xc–dX2] and [Xc+dX2,
Xc+dX3]. This is done for each row. Only short (type = 2) images are allowed.

7. bias -m<pts> image1 image2 [Bmin] [Bmax] [Xmin] [Xmax] [type] [Ymin]
[Ymax]
Calculates and subtracts an individual bias level for each row as derived from the bias
strip between columns Bmin:Bmax. image2 contains the bias-subtracted image be-
tween columns Xmin:Xmax and rows Ymin:Ymax. The input image image1 must
be of type short. The output image image2 can be any of the types short, float, long,
and complex. The bias for row y is derived as the mean of values in the interval [y–
pts,y+pts] as indicated by the option –m<pts>. If pts is negative one single average
bias is subtracted from all rows.

8. calc image1 op image2 [factor]
op = { { + | add | ADD } | { - | sub | SUB } | { * | mul | MUL } |
{ / | div | DIV } | { = | EQ }}
calc image1 “/” image2 10000 <=> image1 = image1 / image2 * 10000
It may be necessary to place quotes around op. If this does not work, use the the keywords
indicated (e.g. div, mul etc). ‘=’ cannot be used with High-C under MS-DOS (use eq
or EQ).

9. const image op c.r [c.i]
op = {{ + | add | ADD } | { - | sub | SUB } | { * | mul | MUL } | { / | div |
DIV } | { @ | sqrt | SQRT } | { = | eq | EQ } | { > | rsh | RSH } | { < | lsh | LSH }}
const image + 500 <=> image = image + 500 ”>” and ”<” are used for right
and left shift, respectively. It is necessary to place quoates around op, ”>” or ”<”. It is
possible to multiply and divide type 1, 2 and 4 images by float constants in order to give

2

images the same mean level. The square root of an image can now be taken by using the
@ operator. Keywords can also be used. ’=’ cannot be used with the High-C compiler
under MS-DOS. const image @ 10 <=> image = 10 * sqrt(image).

10. convpsf -b FltSub image A1 A2 R1 R2
Convolves the (N × N) image with a PSF defined by

PSF (x, y) =
A1

R2
1

e−π(x2+y2)/R2
1 +

A2

R2
2

e−π(x2+y2)/R2
2

N must be a power of 2. The result is stored in image.
–b FltSub gives a value which will replace BLANK pixels.

11. cosmic -x -y -g gain -n noise -s err -k kap -r npt -i nit -m met img img1
Detects and replaces cosmic ray events in img by fitting a sum of all polynomial terms
in (x, y) up to the 3rd order plus a 4th order term in x, y, or radius (r) to a 5x5 square
region centred on any suspected spike (the central pixel is by default omitted from the
fit). A pixel is suspected to be a spike if it is greater than the maximum of the 4 means
of opposite pairs of pixels plus the standard deviation. The fit is repeated after having
omitted the one pixel with the largest residual. This rejection procedure can be repeated
several times. -x indicates that a 4th order term in x is used. -y indicates that a 4th order
term in y is used. -xy indicates that a 4th order term in r is used (default). –g gain is
used to assign the CCD gain in electrons per ADU. –n noise is used to assign the CCD
rms read noise in electrons. –s err gives the CCD scale error as a fraction. –k kap is
a rejection factor (kap*sigma criterion). –r npt is the max. nr. of pixels that can be
rejected in the fit. –i nit gives the number of detection passes through the image. –m
met indicates the spacing between pixels in a 5x5 data matrix. –m1: Spacing = 1 pixel.
–m2: Spacing = 1.41 pixel (45 deg. rotation). –m3: Spacing = 2 pixels. If the residual
of the central pixel is larger than kap*sigma the pixel value is replaced with the fitted
value. The modified image is placed in img1.
NOTE, the image data must be oversampled (PSF-FWHM > 5 pixels), and it might
be an advantage to use a sample spacing of 1.41.

12. embed image1 image2
Embeds image1 in upper left corner of existing image2

13. fft -i -b FltSub image1 image2
Performs a Fast Fourier Transform of image1. The full complex result is placed in image2.
image1 can have any type, but it must have dimensions which are powers of 2. –i indicates
an inverse FFT. –b FltSub gives a value which will replace BLANK pixels.

14. gauss -x -y -m -e epdn image Xc Yc RadMax SkyMin SkyMax
2-dim (–xy or no option) or 1-dim (–x or –y option) Gaussian fitting program. If –xy
or no option is present the program fits a two dimensional single Gaussian function to a
stellar image approximately located at pixel (Xc, Yc). If, in addition, the –m option is
present, a sum of 2 Gaussians are fitted. The Gaussian(s) is (are) fitted to pixels with

3

radii < RadMax. The sky level is calculated from pixels inside the ring: SkyMin <
radius < SkyMax. If option –x is present it fits a one dimensional Gaussian function to
the line obtained by summing the lines between Yc–RadMax and Yc+RadMax. The
Gaussian is fitted to pixels between Xc–RadMax and Xc+RadMax. The sky level is
calculated from pixels with SkyMin < abs(x–Xc) < SkyMax, and with Yc–SkyMax
< y < Yc+SkyMax. If option –y is present the one dimensional Gaussian fitting is done
along the y-axis instead. –e epdn is used to assign the number of electrons per Digital
Number used to calculate the weights. If –e epdn is not given, equal weights are used.

15. getkey image
(test program which reads FITS keywords from image)

16. icp image1 image2
Copy image1 to new image2

17. ifpix image rop const aop value
rop = { { < | lt | LT } | {=| eq | EQ } | { > | gt | GT }}
aop = { { + | add | ADD } | { - | sub | SUB } | { * | mul | MUL } |
{ / | div | DIV } | { = | eq | EQ }}
ifpix image ”<” 500 = 1000 <=> if (image < 500) image = 1000
It may be necessary to place quotes around rop, ”<”, ”>” etc. In case of difficulties, use
the keywords. It is not possible to use ”=” with the High-C compiler under MS-DOS (use
eq or EQ). It is possible to change a BLANK value to another value by ifpix image eq
const eq value

18. imake -p gain -n sdev -s seed image value npix nlin [type]
image = value + [Gaussian noise]
npix: X-dimension
nlin: Y-dimension
type: Image type = { 1 | 2 | 3 | 4 | 5 } (default: 2)
–p gain adds photon noise with mean gain * value.
–n sdev adds Gaussian noise with standard deviation sdev.
–s seed changes the seed for the random generator.
If seed is not given, the system time is used as seed.

19. irm -i image1 [image2] [image3]...
Removes a list of images from system. If –i is given it asks for confirmation by a prompt:
image: ? (y/n/e) for every image in the list. y: Yes, n: No, and e: Exit. Other letters
mean no. You may use wild card *(s) in image1: irm ”ng*” Note, this is not necessary
under DOS.

20. ishift -x -y image X0 Y0
Performs a cyclic shift of columns and rows in image. (0, 0) −→ (X0, Y0). The –x

option indicates that the x-dimension is mirror imaged. The –y option indicates that the
y-dimension is mirror imaged.

4

21. kingfit -n nmax -o image1 image Sky Ic Rc Xc Yc Rmax
Fits a King profile of the form

f(x, y) = Sky +
IcR

2
c

(R2
c + (x−Xc)2 + (y − Yc)2)

to the surface brightness of a globular cluster by minimizing the Mean Absolute Deviation
(MAD) of the residuals. The simplex algorithm is used to find the minimum. All pixels
(except those with BLANK values) within a radius Rmax from the center are used in
calculating the MAD. Sky : The sky value. Ic : The central surface brightness. Rc : The
core radius. (Xc,Yc): The cluster center. –n nmax indicates the maximum number of
function (MAD) calls. –o image1 indicates that the fitted King model should be saved
on image1.

22. line -w fwhm image X1 Y1 X2 Y2
Prints a table of equally (1 pixel unit) spaced pixels values along a streight line connecting
(X1,Y1) and (X2,Y2). The pixel values perpendicular to the line are weighted by a
Gaussian of ajustable width (default width: FWHM = 5 pixels). –w fwhm specifies
the FWHM of the Gaussian weighting function. The table is directed to the standard
output.

23. mean -h -s image [Xmin] [Xmax] [Ymin] [Ymax]
Calculates mean and variance for (Xmin:Xmax, Ymin:Ymax). The –s option limits
the output to a pure mean that can be used as input to other programs. If –h is given, a
table of bit frequencies is listed, starting with the least significant bit (only type 2).

24. median -l limit -w file image image1 [image2] [image3]...
Finds the median or the trimmed weighted mean of a series of images: image1, image2,
image3, ..., and stores the result in the first image. You may use wild card *(s) in image1.
This program does not find the straight median, if the –l option is given. Instead it uses
the following procedure: (1) First, calculate the Median. (2) Next, derive the Median
Absolute Deviation (MAD) from the median. (3) Finally, calculate the weighted Mean
of values deviating less than limit*MAD from the median. The option –w file indicates
that the individual weights are read from the text file file. If –w is not given unit weights
are used to calculate the mean. Default is the straight median.

25. wshow -ipt -r rot -e epdn -w fwhm -f fr -s sr image [Xmin] [Xmax] [Ymin]
[Ymax]
A new show program that can display any subarray (Xmin:Xmax, Ymin:Ymax) of
any image type (1 – 5). It has the same options (see below) as show. In addition it has a
few new character modes: f: 2-D Gaussian fit, x: 1-D Gaussian fit along the X-axis, and
y: 1-D Gaussian fit along the Y-axis. The starting location is the current cursor position.
After the fit wshow automatically enters ”Move Cursor” mode. The following options,
which are of importance for Gaussian fitting, have been added: –i: Show imaginary part
of complex (type = 5) image. –e epdn: Electrons per Digital Number. –w fwhm: Guess
of Full Width at Half Maximum. –f fr: Radius of fitting area. –s sr: Inner radius of

5

sky annulus. The outer radius of the sky annulus is 3*sr. The following options are of
importance for display of the pixel position in relative guide probe coordinates: –p: Show
relative guide coordinates for P8603 CCD. –t: Show relative guide coordinates for TK512
CCD. –r rot: Rotator position in degrees. It should not be necessary to use -p or -t for
LDS images.

26. otf -g Gamma -p Power image Xc Yc RadMax NoiseMin NoiseMax
A program that fits an Optical Transfer Function of the form

T (u, v) = aH(ω) exp(−2πiθ)

θ = αu+ βv

H(ω) = exp(−(ω/γ)P)

ω2 = u2 + v2 + a2(u2 − v2) + 2b2uv

to the complex Fourier transform of a PSF star. The zero frequency should have been
shifted to the pixel location (Xc,Yc). All pixels within a radial frequency of RadMax
Fourier-domain pixels of the zero frequency are included in the fit with unit weight, but the
zero frequency is not included, as it represents the sky value. Parcevals theorem ensures
that the sum of squares has the same value in the two domains. (α, β) gives the exact
location of the PSF star in the image domain. Note, that the PSF should be shifted to
(0, 0) before the Fourier transform is taken. The center of the PSF should be located
within a fraction of a pixel from the origin. γ gives the width of the OTF in inverse spatial
pixel units. (a2, b2) indicates the size of any possible ellipticity, as well as the direction
of the ellipticity. The noise level is is estimated from the complex data within the annulus
located between the radial frequencies NoiseMin and NoiseMax. The program lists γ,
P , a2, and b2 together with standard deviations obtained from the least squares fit.

27. power image1 image2
Calculates the power of image1. The result is placed in a new float image2. The input
image can be of any type (1 – 5).

28. profile -a -s -g -p pa -e eps -n ord -f file -o im1 im Xc Yc Rmin Rmax [npt]
Calculates radial harmonic profiles for a galaxy by means of a robust regression technique
that fits Fourier series to elliptical rings centred on the object. As an option it reconstructs
a smooth image between the ellipses given by [Rmin, Rmax], where r = sqrt(b*a) is the
effective radius. The interpolation is done on the logarithm of the mean intensity profile,
ln(a0[]), as a function of r

1
4 , if the profile is a monotonic decreasing function, and a0[npt]

>= 1, otherwise the interpolation is done on the linear profile a0[] directly. –a: Akima
Interpolation. Default is a Cubic Spline. –s: Ordinary Least Squares Solution, only. –g:
A radial gradient is not included in the fit. –p pa: Position angle (in deg) of the major
axis. –e eps: Ellipticity (1 - b/a) of the ellipses. –n ord: Order of the harmonic series
(max 10). –f file: Output file containing a listing of the profiles. –o im1: Output image
containing the reconstructed image. npt: The number of radial points (min 7 rings).

6

29. prophot -w width image Xc Yc RadMax [a2] [b2]
Calculates a radial profile of average pixel values within elliptical rings centred on (Xc,
Yc). –w width is used to assign the width of the rings. The default width is 1 pixel.
The result is given as a table: Column #1 gives the mean radius of pixels within the ring,
column #2 gives the mean pixel value, and column #3 gives the number of pixels within
each ring. (a2, b2) are optional parameters that defines the ellipticity of the Optical
Transfer Function as given by the otf program.

30. putkey image
(test program which assigns all FITS keywords)

31. rddir directory
Reads header files back from a single directory file containing many headers. directory
must be written by wrdir.

32. rdfits -n -i -s -e ext {image1|@file} [image2] [image3]...
Translates a (list of) ”simple” FITS files, image.ext, into internal image formats. If the
first parameter begins with ’@’ the rest of that parameter is assumed to be the name of a
text file containing a list of FITS files (image.ext) to be converted. If the first parameter
does not begin with ’@’ all parameters on the command line are assumed to be names of
FITS files, without the extension ext. The resulting IMSYS image name is the FITS file
name, minus the extension or, if the –i option is given, the name indicated by the FITS
keywords IMAGE or FILE, or if none of these are given the FITS file name. The –e ext
option indicates that ext is used as the FITS extension. The default extension is ”fit”. If
–n is given no word or byte reordering is done while reading the FITS files. The IMAGE
values are derived from FITS values by the formula IMAGE = BSCALE * FITS +
BZERO. The resulting image has the same data type as the FITS file, except when the
FITS file is 32-bit integer and BSCALE is different from 1.0. Then the resulting image
is 32-bit float. The –s option indicates that BSCALE and BZERO should not be used.

33. rdframe image [npix] [nlin] [frame] [page]
Reads an image from the Brorfelde frame buffer (386-PC).

34. rfft -b FltSub image1 image2
Performs a Fast Fourier Transform of a real image. Because of the symmetry only half of
the complex transform is stored. If input image1 is complex (type = 5), the inverse FFT
is stored in the float (type = 3) output image2. If input image1 is not complex, the
forward FFT is stored in the complex output image2. The real image must be square,
and it must have a dimension which is a power of 2. In case image1 is not complex, it
must have dimension (N × N), and image2 will be complex with dimension ((N/2+1) ×
N). In case image1 is complex, it must have dimension ((N/2+1) × N), and image2 will
be float with dimension (N × N). –b FltSub gives a value which will replace BLANK
pixels.

35. runmed -x mx -y my -l limit image image1
Finds the running median (or trimmed mean) for image, and stores the result in image1.

7

The median/mean is calculated for a box of dimension mx X my. This program does
not find the straight median, if the –l option is given. Instead it uses the following proce-
dure: (1) First, calculate the Median. (2) Next, derive the Median Absolute Deviation
(MAD) from the median. (3) Finally, calculate the Mean of values deviating less than
limit*MAD from the median. Default is the straight median.

36. setring -s std -p pa -e eps image Xc Yc Rmin Rmax [value]
Writes value into a (soft) elliptical ring in an existing image. (Xc, Yc) is the center of
the ring. image = value for Rmin ≤ radius ≤ Rmax. If –e std is given, the edge is
softened by a Gaussian fall-off to zero with standard deviation std. The soft edge is 5
standard deviations wide. –p pa gives the position angle (in deg) of the major axis. –e
eps gives the ellipticity (1 - b/a) of the ellipses.

37. sclean -l loops -g gain resim psfim clnim
Finds the highest (or the lowest) pixel value in resim. At that location a scaled PSF,
as given in psfim, is subtracted from resim, and a value equal to the volume under the
scaled PSF is added to a single pixel in clnim. The unresolved stellar background must
have been subtracted. resim is the resulting residual image. –l loops gives the number
of iterations. –g gain gives the loop gain (scaling of PSF).

38. setwin image [value] [Xmin] [Xmax] [Ymin] [Ymax]
Writes a value into a rectangle in an existing image.

39. show image [Xmin] [Xmax] [Ymin] [Ymax]
Image display program for 386-PC with either the Paradise VGA board, or any board
based on the Tseng Labs ET4000 Graphics Controller. It displays any subarray (Xmin:Xmax,
Ymin:Ymax) of type = 2 images (16-bit integer). A few specific input characters are
used to enter various modes which allow you to change cursor colour, to move the cur-
sor etc. by means of the keyboard arrows, and special keys. The show program has the
following modes:

Character Mode Function
c Change Cursor Colour
s Change Cursor Step Size(s)
h Change Starting Hue for Lookup Table
g Use Gray Scale in ”Move Cursor” mode
m Move Cursor with given Step Size(s)
e Exit Show Program

Values are changed and the cursor is moved by pressing the keyboard arrows. A new
mode is entered by pressing one of the above characters. The m-mode allows two speeds.
The slow speed is controlled by the regular arrows, and the fast speed is controlled by
<Delete>, <Page Down>, <Home>, and <End>. The speed is changed by entering the
s-mode. The two step sizes are changed by using the regular arrows, or the special keys
mentioned above, respectively.

8

40. spot image [X] [Y] [Imag]
Imag = { 0 | 1 } (selects real or imaginary part, if complex)
Writes an 11×11 square centred on (X, Y) onto the terminal.

41. wrdir directory
Stores all header files onto a single ASCII directory file.

42. wrfits -s scale -z zero image1 [image2] [image3]...
Translates an IMSYS ”simple” image into a file image.fit in FITS format. You may
use wild card *(s) in image1. But remember: wrfits ”ngc*” on Unix systems. wrfits
introduces a non-standard FITS keyword IMAGE, which indicates the original IMSYS
name. –s scale gives the FITS BSCALE value used (default = 1). –z zero gives the
FITS BZERO value used (default = 0). The FITS values are derived from IMAGE
values by the formula FITS = (IMAGE – BZERO)/BSCALE. The resulting FITS
file has the same data type as the IMSYS image, except when the image type is 32-bit
float and BSCALE is different from 1.0. Then the resulting FITS file is 32-bit integer.
BSCALE is only used for 32-bit float images. In addition, BZERO is also used for 16-bit
and 32-bit integer images.

43. wrframe image [frame] [page]
Writes an image into the Brorfelde frame buffer (386-PC).

44. xtract -u image1 image2 [type] [Xmin] [Xmax] [Ymin] [Ymax]
Extracts a new image (image2) of indicated type from
an existing image (image1) of any type. If –u is given, the input picture image1 is
treated as unsigned, if it is of type short int (type 2).

IMSYS is currently running on the following compilers:

a. Microsoft-C V5.1 + MS-DOS V3.3

b. Zortech-C V2.1 + MS-DOS V3.3

c. Microsoft-C/C++ V7.0 + MS-DOS V5.0

d. High-C R1.6 + Phar Lap’s 80386—DOS-Extender

e. High-C R2.31 + Phar Lap’s 80386/486—DOS-Extender

f. High-C R2.33 + Phar Lap’s 80386/486—DOS-Extender

g. High-C/C++ VR.04 + Phar Lap’s 80386/486—DOS-Extender

h. WATCOM-C/386 V9.0 + Phar Lap’s 80386/486—DOS-Extender

i. WATCOM-C/386 V9.0 + Rational Systems DOS/4GW

j. cc under Unix System V (HP-UX V7.05/8.05/9.01) on HP-380/835/710

9

k. cc under BSD Unix (CONCENTRIX) on an Alliant FX8

l. cc under BSD Unix (ULTRIX V4.1) on a RISC DecStation 3100

m. cc under BSD Unix (SunOS V4.1.3) on a Sun SparcStation II

n. cc under Unix V.3 (IRIX V4.0.2) on a SiliconGraphics IRIS Indigo

o. cc under Unix (ConvexOS V10.0) on Convex 3220 and Convex 3830

p. gcc 2.7.2 under Linux 2.0.27 on a Pentium PC with a PCI-bus

q. gcc 2.6.2 under FreeBSD 2.0 on a Pentium PC with a PCI-bus

The compiler/OS combination is selected by using the proper include file include/host.h.
There are 10 versions of host.h, and 5 of ftnif.h:

A. host.msc (Microsoft-C and Zortech-C)

B. host.hc1 (High-C Version 1.6)

C. host.hc2 (High-C Version 2.31, 2.33, and 3.04)

D. host.wc (WATCOM-C/386 V10.0 under Rational Systems DOS/4GW)

E. host.wcp (WATCOM-C/386 V9.0 under Phar Lap’s DOS-Extender)

F. host.bsd (Concentrix cc Alliant; no setvbuf() function)

G. host.dec (ULTRIX V4.1 cc and SunOS V4.1.3 cc)

H. host.sig (IRIX V4.0.2, HP-UX V9.01, Linux 1.1.59, FreeBSD 2.0)

I. host.cvx (ConvexOS V10.0 cc on Convex 3220 and Convex 3830)

J. host.v (HP-UX V7.05/8.05 cc on HP-380, HP-835, and HP-710)

K. ftnif.300 (Fortran Interface on HP-380)

L. ftnif.800 (Fortran Interface on HP-835)

M. ftnif.dec (Dec 3100, SparcStation II, IRIS Indigo, Convex 3220)

N. ftnif.wat (486-PC + WATCOM-C/386 V10.0 + Rational Systems DOS/4GW)

O. ftnif.f2c (Pentium PC + f2c + gcc + Linux 2.0.27 or FreeBSD 2.0)

One of host.* should be copied onto host.h, and one of ftnif.* should be copied onto ftnif.h

The main directory contains the following subdirectories:

1. include: Include files

2. libsrc: Library source files

10

3. utilsrc: Utility programs

4. ftnsrc: Fortran test program

5. obj: Object files for IMSYS

6. lib: Library files

7. bin: Executable files

8. bat: DOS batch files

9. make: Make files

10. etc: Some batch files, text files, and readme.doc

11. lharc: The LHarc packing program

The whole system is compiled and linked by using make on 1 of 19 make files,
depending on the operating system or compiler version:

1. make imsys (MS-C without floating point adapter/MS-make)

2. make imsysfp (MS-C with floating point adapter/MS-make)

3. make -fimsyszt (Zortech-C with floting point adapter/ZT-make)

4. nmake -f imsysc7 (MS-C/C++ V7.0/386-PC/MS-nmake)

5. make imsyshc1 (High-C R1.6/386-PC/MS-make/PharLap run386)

6. make imsyshc2 (High-C R2.31/386-PC/MS-make/PharLap run386)

7. make imsyshc3 (High-C R2.33/386-PC/MS-make/PharLap run386)

8. make imsyshc4 (High-C R3.04/386-PC/MS-make/PharLap 386stub.exe)

9. mwmake -f imsysmw (High-C R3.04/486-PC/MW-make/PharLap 386stub.exe)

10. wmake -f imsyswc (WATCOM-C/386 V9.0/WC-wmake/Rational Sys. DOS/4G)

11. wmake -f imsyswcp (WATCOM-C/386 V9.0/WC-wmake/PharLap 386stub.exe)

12. make -f imsys5 (Unix System V: HP-UX V7.05/8.05/9.01/Unix-make)

13. make -f imsys700 (Unix System V: HP-UX V9.01/ANSI-Ext/Unix-make)

14. make -f imsysb (BSD Unix: Concentrix/Unix-make)

15. make -f imsysdec (BSD Unix: ULTRIX V4.1 and SunOS V4.1.3)

16. make -f imsyssig (Unix System V.3: IRIX V4.0.2/Unix-make)

17. make -f imsyscvx (Unix: ConvexOS V10.0/Unix-make)

11

18. make -f imsyslnx (Unix: Linux 2.0.27)

19. make -f imsysbsd (Unix: FreeBSD 2.0)

Make should be called from directory imsys/make

MetaWare’s High-C R1.6, R2.3, and R3.0 are sufficiently different that they require different
makefiles. PharLap’s stub-loader has now been linked with all programs in order to avoid using
run386 explicitly. MetaWare’s mwmake has been introduced in order to drop MicroSoft’s utilities
in the future. WATCOM’s C9.0/386 compiler with its own wmake utility has been introduced
due to errors in High-C R3.0. NOTE that show, wshow, rdframe, and wrframe only work when
they are compiled by MS-C, High-C, or WATCOM-C/386.

On UNIX 4 environment variables MUST be defined in the .login file:
setenv HDRPATH <path to directory containing header files>
setenv IMGPATH <path to directory containing image files>
setenv ARGS <path to directory containing argument files>
setenv IMSYS <path to the IMSYS root directory>
In addition, if IDL is implemented:
setenv IDL PATH .:$IMSYS/etc:.....

On MS-DOS the 4 environtment variables MUST be defined in the autoexec.bat
file:
set HDRPATH = <path to directory containing header files>
set IMGPATH = <path to directory containing image files>
set ARGS = <path to directory containing argument files>
set IMSYS = <path to the IMSYS root directory>

IMSYS can handle 5 different image types:

1. unsigned char (type = 1) 8bit unsigned integer

2. short (type = 2) 16bit signed integer

3. float (type = 3) 32bit real

4. long (type = 4) 32bit signed integer

5. complex (type = 5) 2x32bit reals

There is no show program under Unix, but there is an interface package imsys.pro in directory
imsys/etc which can be used to read and write IMSYS images from within IDL (Interactive
Data Language, Research Systems, Inc., Boulder, CO 80303). Information on these procedures
may be obtained by the IDL call:

DOC LIBRARY, ’imsys’

12

The following user procedures are implemented: ’getim’, ’putim’, ’newim’, ’irm’, and ’list’. I
have also modified the X11 display program SAOImage so that it can read IMSYS images of
types uchar, short, float, and long.

IMSYS has a library module containing functions, which can be called from Fortran. There
is a small test program called test.f in imsys/ftnsrc. The calling procedure for the interface
functions is described in the source file: imsys/libsrc/ftnif.c The trailing underscore must be
omitted on the Alliant. Unfortunately, the convention for passing strings depends on the oper-
ating system. It is defined in ftnif.h. Remember that all text strings must be terminated by
char(0) in C. A new function igenv () has been added to ftnif.c. It allows a Fortran program
(e.g. DAOPHOT) to access the standard C function getenv().

Installation procedure on a DEC or SUN workstation:

1. mkdir <directory containing header files>

2. mkdir <directory containing image files>

3. mkdir imsys

4. cd imsys

5. tar xvf /tmp/imsys.tar

6. cd make

7. make -f imsysdec

8. cd ..

9. define the environment variables HDRPATH and IMGPATH in the login file. (have a look
at the login file in imsys) add imsys/bin to the PATH string in the login file

The system should now be ready to use...

At the Institute of Physics & Astronomy, Aarhus, the old version of DAOPHOT has been
replaced by Stetson’s newer version DAOPHOT-II (dated November 1991). It is also using
the IMSYS interface, but it is located in its own directory. DAOPHOT-II is running on the
HP-300 and HP-800 series computers, as well as on the RISC Decstation 3100 and on a 486-PC
using the WATCOM F77/386 V10.0 compiler. DAOPHOT-II has also been compiled and
linked under Linux 2.0.27 and FreeBSD 2.0. Images can be inspected from within IDL by using
the IDL interface, or by using the SAOImage display program.

It is possible to use wild card (*)s in wrfits, list, and irm. It is also possible to read all FITS
files with extension ”.fit” by the commands: ls *.fit > lst followed by rdfits @lst

It is now possible to fit both 2-D, as well as 1-D, Gaussian functions to stellar or slit images
near the current cursor position within a new display program wshow. It can display images
of any type (1 - 5). The stand-alone program gauss can still be used. It is also possible to fit
a 1-D Gaussian to a slit image by selecting ’-x’ or ’-y’ as the optional parameter for gauss. The

13

2-D Gaussian takes the finite pixel size into account.

The current version is compatible with Microsoft Windows 3.1.

Bjarne Thomsen
Institute of Physics and Astronomy
Ny Munkegade
DK-8000 Aarhus C
Denmark
E-mail: bt@obs.aau.dk (Internet)
Fax: 45 86 12 07 40

14

